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Abstract. Weather predictions from the MM5 mesoscale model were used to compute gridded predictions of
National Fire Danger Rating System (NFDRS) indexes. The model output was applied to a case study of the 2000
fire season in Northern Idaho and Western Montana to simulate an extreme event. To determine the preferred
resolution for automating NFDRS predictions, model performance was evaluated at 36, 12, and 4 km. For those
indexes evaluated, the best results were consistently obtained for the 4-km domain, whereas the 36-km domain had
the largest mean absolute errors. Although model predictions of fire danger indexes are consistently lower than
observed, analysis of time series results indicates that the model does well in capturing trends and extreme changes
in NFDRS indexes.

Introduction

The purpose of the present research was to couple the
National Fire Danger Rating System (NFDRS) with the MM5
meteorological model, to provide NFDRS predictions at grid
points over the full landscape within the domain of the model,
and to evaluate the value of decreasing grid cell spacing in the
modeling process. The NFDRS was developed in the 1970s
to provide indicators of fire severity based on weather and
fuel conditions and thereby help fire managers make deci-
sions and plan for staffing and resource management in the
control of wildfires (Deeming et al. 1977; Burgan 1988).
Traditionally, NFDRS observations and forecasts have been
made at locations considered to be representative of the fuels
and climatology in a broad area. With high-speed, high-
resolution modeling becoming more affordable and timely,
it may be possible to produce NFDRS predictions on hourly
time scales and at spatial resolutions that may be useful for
application in both fire danger rating and fire behavior pre-
diction. The present paper documents some first steps in that
direction. In addition to developing techniques for applying
modeled weather data to NFDRS predictions, a case study of
an extreme fire season is used to test the predictions and to
compare predictions from three different model domains.

Data and model simulations from the 2000 fire season
in North Idaho and Western Montana were used to develop
and evaluate automation of predicted NFDRS indexes.A case
study approach was used in order to evaluate the usefulness of
predictions as applied during a period of known high fire dan-
ger. Because NFDRS values are most critical under extreme
conditions, data sample points within mapped fire perime-
ters were used in order to ensure the model was tested for
performance in areas where actual fires occurred. Evaluation
of the results for the 36-km, 12-km, and 4-km domains was
done by comparing model output with NFDRS observations
in three different ways: (1) averaged within fire weather zones
as defined by land managers in coordination with National
Weather Service fire weather meteorologists; (2) interpolated
over the landscape; and (3) at the closest available Remote
Automatic Weather Station (RAWS).

NFDRS indexes calculated on different fuel models vary
differently with incremental changes in the weather. Fuel
models mapped to grid cells may be different at any given
point from the fuel model at the same point at a different
spatial resolution. Gridded fuel models may also be different
from what is observed on the ground. Thus it is difficult to
compare point to point predictions in a meaningful way using
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spatially varying fuel models. To remove such complexities,
all computations for both observations and model predic-
tions were done using fuel model G (short-needle conifer
with heavy dead fuel load). This had the effect of holding
the fuels constant while allowing weather, fuel moisture, and
slope to vary. This provides a more meaningful comparison
between predictions for the same location, which might oth-
erwise be based on different fuel types where grid cell spacing
differs.

Background

The NFDRS integrates fuels, topography, and weather data to
generate fire danger indexes. Manual observations taken once
a day have, for the most part, been replaced by RAWS, which
collect hourly weather data. However, NFDRS is calculated
only once a day in mid-afternoon (1300 LST) to estimate the
upper bound of fire danger when conditions are usually the
hottest and driest.

Through the Fire Consortia for Advanced Modeling of
Meteorology and Smoke (FCAMMS), many modeling cen-
ters are now running high-resolution mesoscale models to
produce regional weather predictions on a real-time, oper-
ational basis. These mesoscale models can generate the
meteorological fields necessary to calculate NFDRS indexes.
This opens the door for providing fire managers with fire dan-
ger predictions at a finer temporal and spatial resolution than
has ever been available. The present research takes a first step
in examining the usefulness of such fine-scale predictions
when applied to an extreme fire season.

Modeling the NFDRS

A case study run of the MM5 was used to simulate the 2000
wildfire season in the Northern Rocky Mountains and calcu-
late the predicted daily NFDRS fields. For a more detailed
background on the case study, see Hoadley et al. (2004). The
case study area contained three nested modeling domains: an
outer 36-km grid, an intermediate 12-km grid, and an inner
4-km grid (Fig. 1). Four NFDRS indexes, Energy Release
Component (ERC), Spread Component (SC), Burning Index
(BI), and Ignition Component (IC), were computed on all
three grids to determine the preferred grid cell spacing for fire
danger predictions. ERC is an index of the available energy
per unit area within the flaming front of the fire, and depends
on fuel moisture. SC is a measure of the forward rate of
spread of the fire, and is sensitive to wind speed, slope, and
1-h fuel moisture. BI is an indicator of the difficulty of con-
tainment, and is a combination of ERC and SC. IC is an
index of the probability a firebrand will start a fire requir-
ing suppression activities, and is affected by SC and 1-h fuel
moisture.

Traditionally, the NFDRS indexes have been computed
from weather data collected at point locations. The topog-
raphy and fuels information are determined once for each
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Fig. 1. Modeling domains. D01 is 36-km resolution, D02 is 12-km
resolution, and D03 is 4-km resolution.

location, leaving only weather data to be obtained once a
day. Similarly, in calculating NFDRS indexes with mod-
eled weather at every grid cell (rather than at widely spaced
observation sites), the topography and fuel information can
be determined once for each grid cell, with only the mete-
orology changing every day. Therefore there are several
‘static’ gridded fields that are used in the index calculations.
These constant fields include the terrain slope, and maximum
and minimum Normalized Difference Vegetation Index
(NDVI) grids, which are used for estimating live fuel moisture
(Burgan and Hartford 1993, 1997; Burgan et al. 1996). NDVI
data are derived from satellite observations obtained with
the Advanced Very High Resolution Radiometer (AVHRR)
sensor.

Modifications to NFDRS equations

Because model-generated predictions, rather than observa-
tions, are used to compute the NFDRS indexes, some modi-
fications to the equations are required. Specifically, there are
differences in the way some fuel moistures are computed.
The smaller dead fuel elements (1-h and 10-h fuels) respond
very quickly to weather changes; therefore, the small dead
fuel moistures can be calculated using the same equations as
the traditional NFDRS, and prediction errors do not propa-
gate with time. The larger (100-h and 1000-h) fuels respond
much more slowly to changes in atmospheric conditions and
are modeled by daily boundary conditions of maximum and
minimum temperature, relative humidity, and hours of precip-
itation. Consequently, the equations for 100-h fuels keep track
of weather conditions over the past 24 h, whereas the 1000-h
equations keep a memory of the weather variables over the
past 7 days. Additionally, both of the larger fuel classes are
sensitive to day length. Because of the effect of the previous
weather on these large fuels, it is necessary to ‘nudge’ the
automated NFDRS process daily with observed data to keep



Evaluation of MM5-based NFDRS predictions Int. J. Wildland Fire 149

errors in the 24-h boundary conditions from accumulating in
the large fuel moisture computations.

Observed values of fuel moisture from the previous day
were used as the ‘initial’ value to compute fuel moisture for
the prediction day. For the case study, the archived RAWS
point data were obtained and interpolated to each of the
three MM5 domains using Cressman’s interpolation scheme
(Cressman 1959). One additional daily grid required to com-
pute the indexes is the Keetch–Byram Drought Index (KBDI).
KBDI was also available from the archived RAWS data
and interpolated to the MM5 domains using the Cressman
scheme.

Preparation of gridded input fields

Live fuel moisture in the predicted NFDRS implementa-
tion is estimated from relative greenness (RG) maps, which
are derived from NDVI. These maps depict how green the
vegetation is in each grid cell relative to how green it
has been historically (1989–1995). New relative greenness
maps on the 1-km full-US grid are available for download-
ing from the Wildland Fire Assessment System (WFAS)
once a week. Archived RG maps were used for the case
study.

The US 1-km grids of NFDRS input fields such as fuel
moisture and relative greenness use a Lambert Azimuthal
projection, and have 2889 rows and 4587 columns. The MM5
domains used in the present study use a Lambert Conformal
Conic projection. The 36-km domain has 126 rows and 150
columns, the 12-km domain has 111 rows and 150 columns,
and the 4-km domain has 219 rows and 204 columns. There-
fore, all the 1-km grids were re-projected and re-sampled to
be geographically aligned with the MM5 grids.

After the static grids were all re-projected to the MM5
domains, the necessary meteorological fields were extracted
from the MM5 output files for each day. The model run ini-
tialized at 0000 UTC each day was used to generate the
NFDRS predictions. The NFDRS indexes were calculated
for the period from 1500 Mountain Daylight Time (MDT)
to 1500 MDT the following day (forecast hours 21 through
45). The index calculations require fields of temperature, rel-
ative humidity, wind speed, and cloud cover at 1500 MDT
(forecast hour 45), and the previous 24-h (forecast hours 21
through 45) fields of maximum and minimum temperature
and relative humidity, precipitation amount, and precipitation
duration.

Because model data, rather than observations, were used to
compute the indexes, two of the input variables obtained from
the model were handled differently than the data obtained
from RAWS sites. Cloud cover, a variable not predicted by
the model, is required for NFDRS calculations. The MM5
does, however, compute incoming shortwave (SW) radiation,
which was used to estimate cloud cover. For each day, the
maximum possible incoming SW radiation was computed
at the center of each grid cell in all the domains, based on

time of day and latitude and longitude of the grid cell. These
computations were based on the following equation:

qs = qa(a + b × cloudfrac),

where qs = actual SW radiation reaching the earth’s surface
(from MM5), qa = extraterrestrial SW radiation (computed
from latitude, date, and time), ‘a’ ranges from 0.18 to 0.4
(a mean of 0.27 was used), ‘b’ ranges from 0.42 to 0.56 (a
mean of 0.52 was used), and cloudfrac = 1 if clear, 0 if cloudy
(Maidment 1993). The percentage of sky covered by cloud
was estimated by solving for cloudfrac.

The second variable modified was precipitation dura-
tion (number of hours in the past 24 h when precipitation
occurred). The MM5 predicts convective and non-convective
precipitation. One characteristic of the convective parameter-
ization is that it tends to over-predict convective precipitation
in the summer. If there is a small probability of convective
rainfall, the model predicts trace amounts of precipitation
over large areas for several hours. Consequently, some days
were found when a significant number of grid cells in the
domain had up to 24 h of precipitation predicted, even though
the amount was little more than a trace. To rectify this prob-
lem, a minimum of 1.3 mm (0.05 inch) of convective rainfall
in an hour was required before that hour was added to the
duration total. To include cases when convective rainfall was
less than 1.3 mm for any single hour in a day but accumu-
lated to more than 1.3 mm over the 24-h period, at least
1 h of rainfall was counted whenever the 24-h total was
greater than 1.3 mm. Because the MM5 more accurately pre-
dicts the duration of non-convective rainfall, any amount of
non-convective rainfall was included in the totals for both
precipitation duration and amount.

Evaluation results

NFDRS observations are taken at point locations whereas our
automated fields were output to grids at 36, 12, and 4 km.This
presented some challenges for objective evaluation. Because
fire danger ratings are intended to be applied over a large geo-
graphic area (Schlobohm and Brain 2002), observations were
aggregated by: (1) averaging over fire weather zones (zonal
averaging); and (2) interpolation using an inverse distance
square scheme in ESRI’s ArcGIS software (ESRI, Redlands,
CA, USA). The closest available RAWS observation to each
fire was also considered, however, to allow comparison with
the results for zonal averaging and interpolated observation
fields.

Each of the three mapped observation fields was over-
laid with mapped output grids at each of the three domains
in ArcGIS, and data were extracted from within the study
fire perimeters (or the closest RAWS). In cases where fire
perimeters overlapped more than one grid cell or fire weather
zone, the highest observed or predicted value within the fire
perimeter was recorded for evaluation.
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Automatic Weather Stations (RAWS) (grey dots), study fire area burned
(black shapes), and RAWS closest to study fires used for evaluation
(dark grey squares).
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Fig. 3. Mapped values of Energy Release Component for 30 July 2000.
Lower values are represented by light colors and higher values by darker
colors. Heavy black lines show the border between Idaho and Mon-
tana. Black shapes are fire perimeters used as sampling points for data
extraction.

Zonal averages were achieved using ArcView Spatial
Analyst to average the observed NFDRS indexes from all
available RAWS stations within a fire danger rating area
for each day. Fire danger rating areas, also referred to as
fire weather zones, are areas of generally homogeneous fuel,
weather, and topographic features and may be tens of thou-
sands of acres in size (Schlobohm and Brain 2002). In the
western USA, these zones are generally defined collabo-
ratively by land managers and fire weather meteorologists.
Fire weather zones for the study area are shown in Fig. 2.
ArcView Spatial Analyst was also used to compute inter-
polated values. For all available RAWS stations, an inverse
distance-weighting scheme was applied to arrive at interpo-
lated values across the landscape for each index each day.
Figure 3 shows a typical pattern for zone-averaged and inter-
polated ERC data, as well as grid patterns for each of the
three model domains.

Six fires or complexes were selected for the evaluation,
based on the size and duration of the fire as well as the exis-
tence of adequate geographic information system mapping of
the fire perimeter through the life of the fire. Table 1 provides
a summary of the size and duration of each fire. Figure 4
shows the relative size and location of these fires. Data were
extracted from the model grids overlaid with fire perime-
ters. Because NFDRS is intended to identify the worst-case
scenario, if more than one grid cell value occurred within a
fire perimeter, the highest value was selected for evaluation
purposes.

The six fires and a 30-day study period (26 July through 24
August 2000) produced 168 prediction and observation pairs.
Although the fires started on different dates within the study
period, predictions were evaluated for the entire 30 days at
each fire location.

Because observed and predicted values of SC varied only
in very small increments during the study period, SC was not
included in the evaluation. Discussions with NFDRS experts
at the Missoula Fire Laboratory indicated that this is normal
and that, in general, SC is not widely used by fire managers.
It is also likely that the wet bias of the MM5 resulted in very
low values because of the influence on fine fuel moisture.

For each index, mean error (ME), mean absolute error
(MAE) and root mean square error (RMSE) were computed
to measure the accuracy of the predictions. ME, also called
bias, is the average of the difference between the prediction
and observation: (∑

(P − O)
)/

N,

where P = the highest predicted value within a fire perime-
ter, O = the highest observed value within a fire perimeter,
and N = the number of sample pairs. ME gives an indication
whether, on average, errors are more likely to be positive or
negative but, because the positives and negatives cancel each
other out, ME does not tell us much about the average size
of the error. MAE averages the absolute value of the errors
((

∑
|P − O|)/N) and is a better indicator of the size of the error

but tells nothing about the sign of the error. RMSE is calcu-
lated by computing the average of the squares of the errors and
then finding the square root (SQRT ([

∑
(P − O)2]/N)). This

statistic gives an indication of the tendency for large errors
to occur. In general, the RMSE scores in the present study
were similar in magnitude to the MAE scores, indicating
that individual large errors were not influencing the statistics.
Therefore, RMSE errors are not presented in the discussion.

Energy release component

ERC is a number relating to the available energy per unit area
within the flaming front at the head of a fire. It is expressed
as an index value but can be related to units of the order
of 450 J/m2 (British thermal unit/ft2 divided by 25). ERC is
based solely on variations in fuel moisture (Schlobohm and
Brain 2002).
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Table 1. Study fire information

Fire/complex name Location Start date Contained Acres burned

Monture/Spread Ridge Lolo NF 13 July 6 September 27 500
Mussingbrod Beaverhead/Deer Lodge NF 31 July 26 September 84 939
Blodgett Trailhead Bitterroot NF 31 July 10 September 11 276
Ryan Gulch 15 miles E of Clinton, MT 7 August 30 August 17 118
Thompson Flat Lolo NF 4 August 8 September 14 396
Burnt Flats Clearwater NF 11 August 1 September 22 527

Spokane Coeur d’Alene

Missoula

Montana

Butte

Idaho

Burnt Flats

Thompson Flat
Monture

Spread Ridge

Ryan Gulch Fire

Blodgett Trailhead

Mussingbrod Fire

Fig. 4. Location of 2000 wildfires within the 4-km domain (shaded).
Burned area of all fires is shown by darker grey shading and study fires
are shown in black. The circle-with-dot symbols show location of all
fires; owing to the map scale, smaller fires will not show burned area.
Solid black triangles are major cities, and solid black lines are state
boundaries.

Table 2. Mean error (ME) and mean absolute error
(MAE) of predicted energy release component

Statistic Domain

36-km 12-km 4-km

ME
Interpolated −17.46 −14.20 −6.99
Closest −19.45 −16.19 −8.98
Zone −9.43 −6.17 1.04

MAE
Interpolated 18.59 15.65 11.16
Closest 21.61 18.62 14.34
Zone 11.67 8.89 6.45

In a previous evaluation of meteorological parameters pre-
dicted by MM5 using the same case study, it was found that
the model-predicted relative humidity values were generally
too moist (Hoadley et al. 2004). Because relative humid-
ity directly influences fuel moistures, which are the primary
influence on ERC, it was expected that predicted ERC values
would be low. Table 2 shows the ME and MAE statistics for
ERC in all three domains using three different approaches to
interpreting observed values. In general, the ME is negative
as expected, indicating predicted ERC values lower than

observed.When observations were averaged over fire weather
zones, however, the 4-km domain showed a slight positive
bias, indicating predicted values higher than observed. Also,
ME scores of the 4-km results showed greater accuracy than
those of the other domains regardless of observation strategy.
The MAE results indicate that all domains are better at pre-
dicting the zonal average and the 4-km domain consistently
has the least error. During the study period, the observed
ERC at RAWS stations closest to the study fires had values
generally ranging from the mid-50s to low 90s. The range
from minimum to maximum observed ERC at any one sta-
tion during the study period was as little as 13 points on the
Thompson Flat and Burnt Flats complexes, to as much as
36 on the Ryan Gulch Fire. MAE for predicted ERC of the
magnitude observed in this study may be unacceptable for
fire operations given that they represent a high percentage
of the seasonal variability. It may be necessary to develop
techniques to remove the bias in order to make them more
meaningful for practical application.

Figure 5 shows a pocket card for the Bitterroot National
Forest. Pocket cards were developed as a tool for firefighters
to gauge the severity of the current fire season against average
and extreme years. The graphics show seasonal variability of
ERC. From this, one can see that the difference between an
average and an extreme year at this location is of the order
of 15 points of ERC, so underpredicting ERC values by 15
points could be very misleading in assessing the actual fire
danger.

Figure 6 shows a time series of the observed and predicted
indexes for two of the study fires graphed against the daily
acreage increase of the fire. Although there are many fac-
tors influencing the growth of a fire, and a correlation with
NFDRS indexes is not expected, it is interesting to consider
whether there might be an observable relationship between
fire growth and NFDRS indexes. In general, the predicted
values of ERC capture the overall trend of the observations
for the two fires shown. The predictions show considerably
more variability, however.This is likely due to over-prediction
of precipitation.

Burning index

The BI combines SC and ERC to provide a number that
relates to the difficulty of controlling a fire owing to fire
behavior. Values of BI have units that approximate 10 times
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Most large fires are wind driven or fuel dictated. 
RHs � 18% without wind will produce active fire with short range spotting. 
Prevailing winds are normally westerly or southwesterly.
Season-ending event normally occurs by mid September. 
A 2 week drying trend and ERCs � 45 indicate potential for large fire growth
xxNorth Rye Fire in 1998 burned 3950 acres 
xxBear Fire in 2000 burned 145 040 acres
xxGold One Fire in 2003 burned 8296 acres

Developed by NWCG-Fire Danger Working Team FF�3.0.1 02/19/2004 4:35
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Fig. 5. Pocket card for the Bitterroot National Forest showing seasonal variability of Energy Release Component for average and extreme years.

the flame length in feet. The scale is open ended. BI is
sensitive to changes in wind speed, slope, and relative humid-
ity (Schlobohm and Brain 2002). MM5-predicted values of
BI are expected to be low owing to the bias in relative humid-
ity seen in an earlier study (Hoadley et al. 2004). Table 3
shows the ME statistics for BI. Not only are the results
negative as expected, indicating predicted values lower than
observed, but the average errors are quite large. Errors of −40
for BI imply that flame lengths are underestimated by 1.2 m.
This can mean a significant difference in tactics or even in
the ability to use direct attack strategies on a fire. Because
fireline intensity increases more than twice as fast as flame
length, the underpredicted values of BI give an even more
distorted view of potential fire behavior. All three domains
do a better job of predicting the zonal average and once again
the 4-km domain has the consistently best performance of
the three. Figure 6 shows time series data for BI for two fires
during the study period.

Ignition component

The IC is a rating of the probability that a fire requiring sup-
pression action will ignite given that an ignition source is
present. IC is sensitive to variations in wind and fine fuel
moisture. IC is expressed as a probability and has values

ranging from 0 to 100 (Schlobohm and Brain 2002). Earlier
analysis showed that the MM5 performed reasonably well
in predicting wind speeds (Hoadley et al. 2004). Thus, any
errors in predicted IC should be attributed to errors in the pre-
dicted relative humidity. High relative humidity predictions
would cause the fine fuel moisture values to be too high,
resulting in too low values of IC.

Table 4 shows the ME and MAE statistics for IC. As
expected, based on the model predictions of relative humidity,
the results show that predicted values of IC are consistently
lower than observed. As with ERC, the 4-km results are con-
sistently better than the other domains. However, errors of
19–29% of the full range of values for IC should be consid-
ered too large for operational requirements. It may be possible
to develop a simple filter to bring the predicted values into an
acceptable range for operational use by adjusting for known
biases in the model. Figure 6 shows a time series of IC for
two of the study fires.

Discussion

Predicted grids of NFDRS indexes using the MM5 meso-
cale model output have been created. The predictions were
evaluated using a sample of points extracted from actual
fire locations, and compared with observed NFDRS values
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Fig. 6. Time series charts of observed (solid lines) and predicted (dashed lines) National Fire Danger Rating System indexes for two of the study
fires. The closest Remote Automatic Weather Station observation is shown by the heavy black line, the zonal average by the thin black line, and the
interpolated value by the heavy grey line. Predicted data includes 36-km resolution shown by the thin dashed black line, 12-km resolution by the
dashed grey line, and 4-km resolution by the heavy black dashed line. For reference, only daily increase in fire acreage is indicated by the black bars.

Table 3. Mean error (ME) and mean absolute error
(MAE) of predicted burning index

Statistic Domain

36-km 12-km 4-km

ME
Interpolated −41.00 −40.89 −33.08
Closest −40.40 −40.29 −32.48
Zone −27.27 −27.16 −19.35

MAE
Interpolated 41.15 40.96 33.61
Closest 42.12 41.02 35.28
Zone 27.95 27.40 20.82

Table 4. Mean error (ME) and mean absolute error
(MAE) of predicted ignition component

Statistic Domain

36-km 12-km 4-km

ME
Interpolated −33.17 −31.02 −26.80
Closest −32.39 −30.25 −26.02
Zone −23.31 −21.17 −16.94

MAE
Interpolated 33.24 31.38 28.06
Closest 33.14 31.08 28.71
Zone 23.49 22.08 19.21
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calculated at the closest observation point, an interpolation of
all available observations, and observations averaged by fire
weather zone. Not surprisingly, certain biases in the model
are reflected in the NFDRS predictions, especially when rela-
tive humidity is a significant influence. When comparing the
three model domains, the 4-km results are consistently better
than either the 12-km or the 36-km results for all indexes and
all observation strategies. The 36-km results are consistently
the least reliable for all indexes. The model does a much bet-
ter job of predicting zone averages than interpolated values
or point observations. This indicates that the smoothing that
occurs with zone averaging may mask fine scale errors aris-
ing from coarse terrain or boundary layer conditions in the
model. The size of errors would indicate that until further
refinements are made in the modeling system, these predic-
tions should be used with caution and are not suitable for
detailed application in an operational environment. However,
these predictions may be useful for broad scale analysis of
trends in fire danger and comparisons between geographic
areas where the user is only interested in relative differences
and not hard values. It is also possible that in a less extreme
fire season, the results would be more realistic for opera-
tional applications because the model would be expected to
have more realistic predictions of relative humidity (Hoadley
et al. 2004).

Improvements in the implementation of MM5 real-time
predictions in the Pacific Northwest to mitigate the mod-
eled bias in relative humidity and temperature are planned.
This should provide better predictions of the NFDRS
indexes. Also, as the MM5 is replaced by the Weather and
Research Forecast model, there will be more opportunities
for improvements in NFDRS model predictions.The Weather
and Research Forecast model will have more options for
boundary layer and land-use schemes, which may provide
more realistic temperature and relative humidity predictions
during quiescent, stagnant periods of concern to fire weather
forecasters.

http://www.publish.csiro.au/journals/ijwf
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